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Abstract- In this paper parallel O(Log N algorithms for dynamic sinulation of
single closed-chain rigid multibody system as specialized to the case of a
robot manipulator in contact with the environment are devel oped. A new
factorization technique is proposed for conputation of the inverse of the nass
matrix (#°') and the inverse of the Operational Space Mass Matrix (A", This
results in new factorization for both #™ and A™ in formof Schur Conpl enment
with sinple physical interpretations. A new Q'N) algorithm for the problemis
then derived by a recursive inplementation of these factorization, It is shown
that this QN algorithmis strictlyparaillel, that is, it is less efficient
than other QN) algorithns for serial computation of problem But, to our
knowl edge, it is the only known algorithmthat can be parallelized and lead to
a both tinme and processor-optimal parallel algorithms for the problem i.e.,
parallel ¢{log N) algorithns with Q(N) processors. The parallel algorithms
devel oped in this paper, in addition to their theoretical significance, are
also practical from an inplenentation point of view due to their sinple

architectural requirenents.
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NOVENCLATURE
Nunber of total Degree-O-Freedom (DOF) of system

Position vector from OJ toO0,p “= p
1 1+

3x3 matrix describing the orientation of frame i+1 with
respect to frame i.

Mass of link i

First and Second Monent of mass of link i about point 0l

Spatial inertia of link 1 about point 0i
G obal matrix of spatial inertias,i = Nto 1

Symmetric Positive Definite (SPD) nass matrix
Inverse of Qperational Space nmass matrix

Jacobian nmatrix

G obal vector of joint positions, i = Nto 1

G obal vector of joint velocities, 1= Nto 1l

G obal vector of joint accelerations, 1 = Nto 1

G obal vector of applied Jjoint forces, i = Nto 1
Angul ar and linear acceleration of link i (frame i+1)

Li near velocity and acceleration of link i (point 01)

Spatial velocity of link i

Spatial acceleration of link i

d obal vector of link Velocities, i = Nto 1
d obal vector of link accelerations, i = Nto 1

Force and nonment of interaction between |ink i-1 and link

Spatial force of interaction between link i-1 and link i

d obal vector of interaction forces, i = Nto 1
Spatial axis (map matrix) of joint i

G obal matrix of spatial axes, 1 = Nto 1
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Figure I. Links, Frames, and Position Vectors
Cl : Center of Mass of Link i

Figure 2. Perfect Shuffle Exchange augmented with Nearest Neighbor (SENN)

Interconnection,
Solid lines are shuffle and dashed lines are exchange.
Double solid lines convert the interconnection to nearest neighbor.

S 00000

Figure 3. Architecture for Multilevel Parallel Computation of the Algorithm.
(Shuffle Exchange horizontal processors interconnection is not shown)




[ . | NTRODUCTI ON

The application of single open-chain robot manipulators for many typical
tasks involves the interaction with the environnent, This interaction
constrains the motion of the End-Effecter (EE), resulting in a single closed-
chain system Although, topologically, such a system represents a rather
sinmpl e exanple of closed-chain mechanisns, froma conputational point of view,
its dynamcs simulation (or, forward dynamcs solution) is significantly nore
demanding than that of a single open-chain system In addition to the solution
for constraint force, it requires twice the solution of forward dynam cs of
the open-chain system as well as the conputation of the inverse of the
Operational Space Mass Matrix [Il of the open-chain system AT

Serial algorithnms for forward dynamics of single closed-chain system have
been proposed by Orin and McGhee [2], Featherstone [3,4], Lathrop [5], Lilly
[61, Lilly and Oin [7,81, Brandle, Johanni, and Otter [91, Rodriguez,
Kreut z- Del gado, and Jain [10]. The works in [5,6,8,9,101 include the
devel opment of Q(N) algorithms which, asynptotically, represent the nost
efficient nethod for serial solution of the problem

Despite the significant inprovement in the efficiency of serial algorithns;
there is considerable motivation for devising faster algorithns for the
problem This ranges fromthe need for extensive off-line sinulation
capability for design and evaluation purposes to real-tine inplenentation for
controlled sinulations and teleoperator training. In particular, for many
anticipated space teleoperation application a faster-than-real-tine sinulation
capability will be essential [11,12]. Gven the relative nmaturity of serial
algorithnms, it is clear that any significant inprovement in the conputational
ef ficiency can be only achieved through exploitation of a high degree of
parallelism However, unlike the serial conmputation, there seens to be no

report on the devel opment of parallel algorithnms for the problem




The devel opnent of efficient parallel algorithms for forward dynamcs of
both single open- and closed-chain systens is a rather challenging problem It
represents an interesting exanple for which the analysis of the efficiency of
a given algorithm for parallel conputation is far different and nore conpl ex
than that for serial conputation. In fact, the previous results [12,13,14] and
the results of this paper clearly indicate that those algorithns that are |ess
efficient (in terns of either asynptotic conplexity or nunmber of operations)
for serial conputation provide a higher degree of parallelism and hence are
more efficient for parallel conputation.

From an algorithm c standpoint, the forward dynam cs solution of single
open- and closed-chain systens are closely related. The Q(N) algorithms for
the single closed-chain systemrely on an QUN) procedure for solution of the
open-chain system They also rely on an Q(N) recursive procedure for
conput ati on of A"l This recursive procedure has a structure simlar to that
encountered in the conputation of the Q'N) algorithns for open-chain systens,
or nore precisely, in the conmputation of the articul ated-body inertia (for’
exanpl e, conmpare Eq. (43) in [81 with Eq. (45) in [15]. ) Consequently, the
challenge in parallelization of the Q(N) algorithms for both single open- and
cl osed-chain systens is the sane. Mre precisely, it resides in the
parallelization of the structurally simlar nonlinear recurrences that arise
in the conputation of the articul ated-body inertia and At

An investigation of parallelismin forward dynam cs solution of open-chain
systens by analyzing the efficiency of existing algorithnms for parallel
computation is reported in [12,13]. This investigation rely on tw fundanental
results, established in [16], regarding the QUN) algorithms for the problem
The first result is that, at a conceptual level, the QUN) algorithms can be
essentially considered as a procedure for recursive factorization and

inversion of mass matrix [17,18]. The second result is that, at a




conput ational level, the Q(N) algor thins lead to the conputation of the
articul ated-body inertia [15].

Bui | ding upon these two fundamental results, the investigation in [12,131
led to two main conclusions. Firs' the QN algorithms are strictly
sequential, that is, parallelism n their conputation is bounded. More
precisely, the main bottleneck in parallel conputation of QUN) algorithms is
in parallelization of the nonlinear recurrences for conputation of the
articul ated-body inertia, As shown in [12,13], this nonlinear recurrence
belongs to a class of recurrences which are well known to be strictly
sequential (The reader is referred to [12-14] for a nore detailed discussion. )
In fact, not surprisingly, various approaches proposed for parallel
comput ation of forward dynamics of open-chain systenms are based on the
parallelization of the 0(N*) and 0(N%) algorithms [XX, 12,13,19-22) and there
seens to be no report on parallel computation of the Q(N) algorithms.

The second conclusion in [12] was regarding the existence of a both time-
and processor-optinal parallel algorithm i.e. , an O(Log N) parallel algorithm
with Q(N) processors, for the problem |f there indeed can be such an Qptima
parallel algorithm then it nust be derivable froman Q'N) serial algorithm
Since existing O(N) algorithnms are strictly sequential, the first step in
deriving the optimal parallel algorithmis to develop a new serial QN
algorithmwith efficiency for parallelization in mnd, Such an QCN) algorithm
can only be devel oped by a global refornulation of the problem and not an
al gebraic transformation in the conputation of existing Q'N) algorithns.

From a physical viewpoint, a given algorithm for the problem can be
classified according to its interbody force deconposition strategy, From the
standpoi nt of conputation, the algorithm can be classified based on the
resulting factorization of the mass matrix which correspond to the specific

force deconposition strategy (see [13] for a more detailed discussion, ) A new




al gorithm based on a global reformulation of the problemis then the one that
starts with a different and new force deconposition strategy and results in
a factorization of mass matrix (see also the brief discussion in §II.C.)

Interestingly, a recently developed iterative algorithmin [23,241 for
open-chain system represents such a global reforrmulation of the problem It
differs fromthe existing QN) algorithnms in the sense that it is based on a
different strategy for force deconmposition, In [13,14,25], we have shown that
this strategy leads to a new and conpletely different factorization of M-*in
form of Schur Conplenent, This factorization, in turn, results in a new ¢Q(N)
algorithm for the problem which is strictly efficient for parallel
computation, that is, it is less efficient than other QON) algorithms for
serial conputation but, it can be parallelized to achieve the time |ower of
O(Log N) with QUN) processors.

In this paper, we show' that this factorization of M'1 can be used to derive
a new Schur Conpl enent factorization of A'. W also show that the application
of Schur Conpl ement factorization of M-I and A™ for the forward dynani cs
solution of the single closed-chain systems results in a new Q' N) for the
problem This Q'N) algorithns, though not conpetitive for serial conputation,
can be parallelized, | eading to an O0(Log N) parallel algorithmwth Q'N)
processors for the problem To our know edge, this represents the first
optinmal parallel algorithm for the problem

This paper is organized as follows. In &Il notation and sone prelimnaries
are presented. The solution procedure for the forward dyHamics of a single
cl osed-chain system is reviewed in §II1I. The Schur Conplenment factorization
of M-*and A™' are derived in §1v. Efficient serial inplementation of the
resulting Q(N) algorithmis discussed in §v. Parallel conputation of this new
Q(N) is discussed in §VI wherein a nultilevel parallel Q(Log N) is also

presented, Finally, some concluding renarks are nmade in §VII.




[l Notation and Prelimnaries
A. Spatial and dobal Notation

In the followi ng derivation, we use spatial notation which, although is
slightly different fromthose in [3,4,17,18,231, allows a clear understanding
and conparison of the various algorithms, For the sake of clarity, the spatial
quantities are shown with upper-case italic letters. Here, only joints with
one revolute DOF are consi dered. However, all the results can be extended to
the systems with joints having different and/or nore DOFs.

Wth any vector V, a tensor V can be associated whose representation in any

frame is a skew symetric matrix:

0 Y v
. (2) ()
V= v(z) 0 -v(x)
-V \Y 0
(y) {x)
wher e V(x)’ v(y), and V(Z) are the conponents of V in the frane considered.
The tensor ¥ has the properties that V' = -§ and \71V2 = Vixyi.e., it isa

vector cross-product operator (T denotes the transpose). A matrix Vv associated

to the vector V is defined as

R u ¥ X u o
V = and l./T = CRGX6
0 u -V u

where here (and through the rest of the paper) U and O stand for unit and zero
matrices of appropriate size. The spatial velocities of two rigidly connected
points A and B are related as

_ AT
VA = PA‘ BVB

wher e PA B denotes the position vector fromB to A The matrix f’A 5 has the

properties as

- -

_5 51
PA,BPB,C_PA.C and Soue PB,A (1)

The spatial forces acting at two rigidly connected points A and B are rel ated:

~

F = P F
B A B A

If the linear and angular velocities of point A are zero then

»—’—



A A’B B

In general, the spatial inertia of link i about point j is denoted by I R

The spatial inertia of link i about its center of nass, Ii o is given by
e |..1 Y
b O m,U-

‘The spatial inertia of body i about point 0, (desi gnated as 11) i's obtained as

) o7 u S1[J, o[V © k. h
I =S1I S = 3 =1 . (2)
! bner o ujlo muf{-§ U Ry mU

whi ch represents the parallelaxistheoremfor propagation of spatial inertia.
In our derivations, we also make use of global matrices and vectors which

lead to a compact representation of various factorization. For the sake of

clarity, the global quantities are shown with upper-case ocnipt letters. A

bidiagonal block matrix ? is defined as

u
Ty U 0
- BNXEN
P = 0 -PN_2 u eR
0 0
| 0 0 —Pl UJ
Note that, according to our notation, P = Px' The inverse of P is a lower

1+1 1§

triangular block matrix given by

u
PN,N-I u 0
S - 6NX6N
poo= PN w2 PN-!,N-Z u eR
P P P (
N, 1 N-1,1 2,1

B. An Qperator Expression of Jacobian Matrix
Following the treatnent in [101, a factorization of Jacobian matrix by

using our notation can be derived as follows. The velocity propagation for a




serial chain of interconnected rigid body is given by (Fig. 1)

vV, - PV T HEQ (3)

whi ch, by using the matrix ?, can be expressed in a global form as

PV = #Q =V = (PT)'HQ (4)

The EE spatial velocity, VNH, is obtained by witing Eq. (3) for i = N+t as
AT _ 2T

VW1 - PNVN =0 = Vm1 = PNVN (5)

Let us define a matrix g = [f’; 00 . . . 01eR”® From Egs. (4)-(5), we get

— T,-1
Vi, = BV B(P)THQ (6)
The Jacobian matrix is defined by relating the EE spatial velocity and joint
vel ocities as

Vo - 90 (7)
FromEgs. (6)-(7) a factorization of Jacobian natrix is then derived as

3= B(PH u (8)

C. Equations of Mtion

The equations of motion for a single (open- or closed-chain) arm are

gi ven by

N - 1
MQ =9 - b(6,Q) 3 an (9)
Def i ni ng

v — T
b (9. Q,FN*l) - b(elQ + 3 FN*1’ and
E}T =97 - b (9,Q,Flmﬁ
Egq. () can be witten as
MO = Fo» Q = M% y (10)

The vector b’ (e'Q’FNu) represents the contribution of nonlinear terms and the
external spatial force (FN+1)‘ For an open-chain arm Fi. | S specified and

hence the vector b'(G.Q.FNH) can be conputed by using the Newton-Euler (NE)
algorithm[26] while setting Qto zero. |n Eq. (10), yTQ Col(p_“}c(RN’“

represents the accel eration-dependent conponent of the control force.

In deriving the factorization of nmass matrix, it is assumed that the vector

10




b (6,Q ’Frm) and subsequent |y ?T are explicitly conmputed. Therefore, the
multibody system can be assuned as a system at rest which upon the application
of the control force ?T accelerates in space, The propagation of accelerations
and forces anmong the links of serial chain are then given by
. '-T . .

= +
Vl Pi- 1Vl' 1 HXQX (11)

-

F o= Ilf/i +PF (12)
Equations (11)-(12) represent the sinplified NNE algorithm (with nonlinear
terms being excluded) for the serial chain. Note that, the force deconposition
strategy of the N-E algorithmis given by Eq. (12). As shown in [17,181, this
strategy leads to a specific factorization of M. It should be pointed out that
the recursive factorization of A’ in [16-18] can be shown [131 to be a

factorization resulting fromthe specific force deconposition strategy of the

Articul ated-Body Inertia algorithm given by Egq. (26) in [15].

[1l1. Dynamics of a Robot Armin Contact with Environment,
A. Dynamic Equations of Mdtion

Qur problem statement of the dynanmics of a single robot arm in contact
with the environment mainly follows the treatment presented in [3,6,7]. For

cl osed-chain systens Eq. (9) is witten as

"Q =g - 3'F, (13)
wher e FN’l is the unknown spatial contact force exerted by the EE and

‘:?T =7 - b(s,Q)

The vector b(e,Q) can be conputed by using the NE algorithmwhile setting
both Q and Fm to zero. Equation (13) can be rewitten as

Q= #l% - M, Q, "~ Q, (14)
Q, ~ M3y (15)
o = MIF, (16)

wher e Q0 is the vector of joint accelerat ons of unconstrained, or open-chain,

system and QC is the vector of joint acce erations resulting fromthe spatial

1




contact force. From Eq. (7 the spatial acceleration of EE is derived as

Vgea = JQ + (17)
By substituting Egs. (14)-(16) into 17) it follows that

: _ “lg 8n “14T o -

VN+1 - }M f';'l' * jQ JM 3 FN«M VON+ VCN*I (18)
. _ _1 .

Vower = M F.+ JQ (19)
. _ -1 T

Vewer = M 3 F, (20)
wher e V0N+1 is the EE spatial acceleration of open-chain arm and I'/c]M is the

EE spatial acceleration resulting from the contact force. The matrix

A-l - 3M~1}T8R6x6 (21)
is the inverse of operational space mass matrix [1], The conditions for
positive definiteness of matrix A" is discussed in the appendi x, Throughout

the rest of the paper it is assumed that A™' is positive definite.

B. Mdel of Contact

The EE of an open-chain arm has six DOFs. The contact with the environment
constrains the notion of the EE and results in the |oss of DoFs. Mbdeling of
contact has been discussed in literature (see, for exanple, (XX, XX]).
Following [3,6,7] the contact can be nodeled as a multiple-DOFs joint (joint

N+1) connecting the EE and the environment. Let HN and WN\‘1 stand for the

+1

map matrices of joint N+1 representing the notion (unconstrained) and
constraint vector subspaces, respectively. The two vector spaces are
orthogonal, that is,

T _ T _ .
net¥ner = © and WMo =© ’ (22)

For the sake of sinplicity and with no | oss of generality, let us assune, as
in [6,7 , that H and W are orthonormal, that is,
N+1 N+1

Ty -U and W' w =U
N+1 N+1 N+1 N+1

Let nf and nc denote the number of DOFS and the nunber of degrees of

constraint (DOC) of the EE, respectively, with nf + nc = 6. In this case,

exnf 6xnc

H ¢R

Ne1 . Note that, as will be seen in §iv, this nodeling of

and W eR
N+1

12




Joint N+1is simlar to the way that other joints of arm are nodel ed,

The EE spatial acceleration and force are given by [6,7]
Vv T G WG (23
FN+1 = HN+1KF-+WN+1KC (24)
where G_ and KFelR“ and G, and chme. Following [6,7], two types of contacts
are considered:
Type |. G, and KF are specified and GF and KCneed to be conmput ed,
Type 11. G, is specified and
K. = oK. *+d (25)
where matrix ¢ and vector d are known. For this type, GF, KF, and KCneed to

be conput ed.

C. Forward Dynami cs Sol ution
We briefly review the dynamic solution for the two types of contact as

presented in [6,7]. Qur nmain purpose, however, is to analyze the conputational
steps involved in the solution which is essential for devel oping serial and

paral l el algorithms discussed in §IV and §V.

From Egs. (18)-(21) it follows that

-1 o
V0N+1 - A FNn B VN+1 (26)

For Type | contact, substituting Egs. (23) and (24) into Eq. (26) leads to

. -1 _
VCN+1 - A FM1 = HNHGF‘+WN#IGC (27)

Mul tiplying both sides of Eq. (27) by Wz” and using Eq. (22) gives:

T

T -1 _
N+1 N+1 wNuA FN+ =G (28)

1 C

from which, after sone nmanipulation, it follows that

T ,-1 T T -1
(WN+1A wnn)Kc = KHVva wnnA H oy F Gc (29)
If A" is positive definite then the matrix w;ﬂ/\"’wmlem"‘”‘“ isal so
positive definite (see Appendix) and hence Eg. (29) can be solved for KC. Not e
that, if the right-hand side of Eq. (29) is obtained then the conputation of

Kcrequires the solution of an ncxnc SPD linear system

13




For Type 11 contact, by substituting Egs. (23)-(25) into Eq. (26), it
can be shown that [6]

T -1 _ 4,7 _ T -1 _
((wNHA )(HN¢1¢ + WN+1))CK_W v wN*lA HN+1d G

N+1" N+i C

which, assuming that the coefficient matrix is positive definite, can be
sol ved for KC.KF and FM1 can then be conmputed fromEgs. (25) and (24).

As can be seen, the explicit conputation of the vector 3JQ is needed in the
solution procedure. It seems, however, that less attention has been paid in
the literature to the efficient conmputation of this vector. In [27] a nethod
for conputation of the matrix $ is proposed. Note, however, that the explicit
conputation of % is not needed. In fact, as noted by Featherstone [15] and
di scussed in [28], the vector JQ can be obtained with” alnost no additional
cost as a byproduct of the conputation of the vector b’ (6,Q). To see this,
note that in Eg. (17) if Qis set to zero then the vector 3Q represents the
spatial acceleration of the EE resulting from nonzero vector of joint
velocities (Q. Recall that the vector b’(8,Q) is obtained by conputing the
N-E algorithm while setting the vector Q to zero, Therefore, if the NE
algorithmis slightly nodified so that the spatial acceleration of the EE,
denot ed by Vém’ is also conputed then we sinply have l‘/(’)N+1 = Q.

Based on the above discussion, the conputational steps of the dynanic

solution procedure are summarized in Table |

D. Extension to other Mdels of Contact

We considered the specific nodel of contact in [6,7] since it represents a
good exanple which can be used to highlight the conputational requirements of
the forward dynamics solution of the single closed-chain system O her nodels
of contact will lead to a rather slight nodification in the conmputation. To
see this, note that, a different nodel of contact results in a different
strategy for conputation of the contact force, an‘ Once this force is

obtained the rest of the conputations remain the same as in Table I. In

14




Step |: Conpute ?T

1. Compute b’ (6, Q) and l'/ém+1 = 3Q by using the NE algorithmwhile setting Q

and F to zero.
N+1

2. Conpute ?T =37 - b'{6,Q) (30)
Step Il: Compute I'/ON*1

1. Compute Q = M'I?; (31)

2. Conpute l'/é);“1 = JM'I?’T:JQO (32)

3. Compute f/ON\\l - f/é);ux * l./(’:mn (33)
Step I11: Conpute A™

Step I1V: Conpute FM
1.Solve Eq. (29) for K
2. Conpute Fin fromEq. (24).

Step V. Conpute Q

1. Conpute 7' = ,;lTFm1 (34)
. _ -14T _ )

2. Conpute QC = M3 Fr = M-19’. (35)

3.Conpute Q = Q - Q. (36)

Table |I. The Conputational Steps of Forward Dynamics Solution Procedure

general, Eq. (26) represents six equations in twelve unknowns, i.e., the
twel ve conponents of FNn and Vuu' Note that, the conputation of me is
i ndependent of the nodel of contact considered and only requires the solution
of the open-chain system [|f the problemis well posed then another set of six
equations can be derived leading to the conplete solution for F}M and {,rm'
In the following a different nodel of contact is briefly discussed.

Lathrop [51 considered several exanples of contact and proposed a nore
general nodel in which FN+1 and l'/N+1 are given (in some frame) by
VNH - M‘IQ * Kl (37)

P = MK, (38)

15



6

where the matrices M1 and Mzeméx and the vectors Kk and KZCRG are known. The

unknown vector QeR® represents the six independent notion and force DOFs.

Gearly, once @ is obtained F  and VM canbecomputed from Eqs. (37)-(381
and the problemis then reduced to that in previous section, By replacing
Eqs. (37)-(38) into Eq. (26) it follows that

-1 _ _ -1
(A°M, + M)Q = Vowe ; ~ (K, + A KZ) (39)

If the problem is well posed, i.e., the coefficient matrix is positive

definite, then Q can be obtained by solving the 6x6 |inear systemin Eq. (39).

I'V. Schur Conpl ement Factorization of A-land A
A The Interbody Force Deconposition Strategy
The iterative algorithns in [23,24] for forward dynam cs solution of open-

chain arns are based on a deconposition of interbody force of the form
F: - HlFri * wipsx (401
wher e FSl is the constraint force and Viis the orthogonal conplenent of Hl
[29,301, that is,
WH =oand HW =0 41
[ S i1 ( )

6xni 6x(6-ni)

For a joint i with multiple DOFs, say ni<é DOFsJ“cR and V%eR
Insofar as the axes of DOFS are orthogonal (which is the case considered in

this paper) the matrix Hlisa projection matrix [29] and hence

HH = U (42)

It then follows that the matrix UJsaIso a projection matrix [29,301, i.e.,

T, -

WW o= u . (43)
T T _

HH +WW = U (44)

An exanpl e of matrices Hl and W for one DOF revolute joints is given in §V.A.
For a nore detailed discussion on these matrices see [29,301.

The deconposition in Eq. (40) seens to be nore physically intuitive than
that of the Articulated-Body Inertia algorithm given by Egq. (40) in [15],

since it expresses the interbody force in ternms of two physical conponents

16




the control (or, working) force and the constraint (or, nonworking) force.

That such force deconposition has not been considered as a viable alternative
for deriving algorithms for directserial and parallel solution of the problem
is not surprising. The decomposition in Eq. (40) naturally leads to explicit
conput ati on of the constraint (and interbody) forces. In fact, researchers
have often argued that since the constraint forces are nonworking forces their
explicit evaluation, which leads to the conputational inefficiency, should be
avoided. While this argument is in general valid for serial conputation- which
is also supported by the results in [13,141 for open-chain systens and the
results of this paper for single closed-chain systenms- the deconposition in
Ej. (40) leads to new factorization of #™' and A™' and subsequently optinal

parallel algorithns for forward dynamics of both open- and closed-chain armns.

B. A Schur Conmpl ement Factorization of A-l

In [13,14], we have shown that the force deconposition in Eq. (40) leads to
a new factorization of M-l and subsequently a new O(N) algorithmfor the
forward dynam cs of open-chain arms. W briefly review this factorization of
M'l since not only it is needed for solution of closed-chain arnms but, nore
inportantly, it is also essential in deriving the factorization of A

To begin, let us define followi ng global matrix and vector for i = Nto 1:

6NxSN

W 4 diag{wl)eﬁk and 95 4 cql(FSl) eR"

Equations (11)-(12) and (40)-(44) can be now witten in global form as

PV = 1O H (45)

PF = 3V (46)

F = KF_+ WF (47)
T S

W = Oand ®'w = O (48)

®'® = U and WW= U (49)

" + ww' = U (50)

From Egs. (45), (46), and (48) it foll ows that
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v=yglpg (51)
WP = wTHQ = o (52)
Replacing Eq. (51, into Eq. (52), we get

w'PTslpg = 0 (53)

Substituting Eq. (47) into Eq. (53) yields

WPTITIP g+ WF ) = 0 =W P9 IPWE_ = WPy PRE, of (54)
AF = -BF_ (55)
where 4 £ W P s P R ana B L WTPTI ' PHeRS™ are block tridiagonal

matrices. From Egs.(55) and (47)it follows that

3 - [R ] W(WT?Ts'l?W)‘le?Ts'iw]s;T (56)
andsubstituting Eq.(56) into Eq. (51) leads to

v = 9-13[ X - W(WT?TT’?W)"WT?T?"W] N (57)
By nultiplying both sides of Eq. (45) by X and using Eq. (49) Q is conputed as
HH) = ®'PWV s Q= 3PV (58)
Finally, by replacing Eq. (57) into (58) it follows that

Q - H'PTeipx - WP I PP Pw) TRy Py F_ (59)

|
In comparison with Eg. (10), an operator factorization of M-l,in ternms of its
decomposition into a set of sinpler operators, is given by

P ipxre - HPT I oW WP e o) WPy ek (60)

Let € & ®™PT9 'PueR™™ #! can now be expressed as

<
1

<
!

=¢ - B8'47'8 (61)
The matrix €, simlar to £ and B is block tridiagenal. Furthernore, as shown
in the appendix, 4 and € are symmetric and positive definite (SPD). This
guarantees the existence of 47t

The operator form of #™' given by Eq. (61) represents an interesting

mat hemati cal construct. To see this, note that, if a matrix £ is defined as
P a . - dR6Nx6N
B
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then € - B'47'B is the Schur Complement of A in £ [311. The structure of

matrix £ not only provides a deeper physical insight into the conputation but
it also notivates a different and a much sinpler approach for derivation of
the factorization of M-l and its associated QCN) algorithm [13, 321.

It is worth pointing out that by using the nmatrix identity

(E - xo) ' =E+ET'RODT _ vE X)) tve? (62)

in Egs. (60)-(61), an operator expression of Mcan be obtained as

1

#M=6"t+e'B8 (s - BET'B)BG! (63)

1

= (KPP 9 'pi)t + TP e et TP e (wTPTe rew) - (wTPTe TP

(HTPTe 3! (RT?T:;"?W)]“ WP s er) (TP i)
However, this operator expression of Mis significantly nmore conplex and its
associated algorithmis less efficient (in terms of number of operat. ens) than
other operator expressions and their associated algorithms given in 17, 18].

This clearly indicates that the force deconposition given by Eq. (42) |eads

nore naturally and efficiently to the conputation of M-Irather than M.

C. A Schur Conpl ement Factorization of At

The new factorization of M- directly results in a new factorization of

A'l. This factorization is derived by substituting the factorization of @,
given by Eq. (8), and M-,given by Egs. (60)-(61), into Eq. (21):

Al = gl gt = (PN TP T iPH - 1R e e (WP e ew) W TR e e T BT
which can be witten as

Al = @) awNP s - lew W iew) WP )Pt )T (64)
The key to sinplification of this expression is the fact that, from Eq. (50),

we have

#x" = u - ww' (65)

By replacing Eq. (65) into Eq. (64) and after some involved al gebraic

. . . . -1 . .
mani pul ations, a sinple operator expression of A is derived as
1

TpTg-1

At = geTlgT - g lew (WP e lew) W e RT (66)
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This expression can be further simplified since

= gy7'PW T (PIW 00 . . . 0]eR™ (67)

— pgl,T _ AT,-1%
= gIB = PIP (68)
The parallel axis theoremin Eq. (2) can be also used for propagation of the
i nverse of spatial inertias. To this end, by using Eq, (l), Eq. (68) can be
rewitten as

_ 5 =1 2Ty-1,-1 = o ~T -1 = -1
D = () (IN)(PN) ) (me, Wil ) I v
which inplies that the matrix D is just the inverse of spatial inertia of link
N about point O

N+1

This factorization of A" can be witten in form of Schur Conpl enent as

al=op-e'ale (70)

Note that the matrix «£ is the same as in Eq. (61). Let us define a matrix £':

S } génxen

'is then the Schur Compl ement of 4 in £'.
The factorization of A-* has a structure simlar to that of # 'sinceitis

al so described in formof Schur Conpl ement. As for ml

, the structure of
matrix £' not only enables a sinple physical interpretation of this
factorization but also notivates an alternate and sonehow sinpler approach for
its derivation [311. However, it should be enphasized that the sinilarity in
the factorization of M-l and A™" is not linited to their anal ytical form
(i.e., the Schur Complenment form but it further extends to their physical
interpretation. To see this, let us rewite M-land A-| as
o= WP - W TRy o) WP e

= (87 - oW (WP T W) TP )T
Let us also define a matrix X as

-1-

K=9 3w (WP tpw) iy TRt

-1 -1
M~ and A~ can now be expressed as
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ml o= HTPTKkPH

A-l _ BKBT

As shown in [31], the matrix X has a sinple physical interpretation. The fact
that #* and A™' can be both derived fromX then allows a unified and
alternate physical interpretation of factorization of #' and A™! based on
the physical interpretation of matrix X.

From a conputational perspective, a nmain advantage of this structural
simlarity resides in the inproved efficiency in both serial and parallel
conput ation, As shown in §V and &VI, for the cases (such as the one in this
paper) wherein the conputation of both M and Atis needed, this structural

simlarity can be exploited to increase the conputational efficiency

V. A Serial Q(N) Algorithm for Forward Dynam cs of Single O osed-Chain Arm
In this section, a serial algorithm for the problem based on the Schur
Conpl emrent factorization of Mm-land A" is discussed. This discussion
provides a deeper insight into the structure of conputation while using these
factorization. It also highlights sone issues that need to be considered to

achieve a greater efficiency in both serial and parallel conputations.

A. Qperator Application of wm

As shown in [25], the explicit conputation of M-can be performed in 0(N%)
steps. Once Hois computed, its nultiplication by a vector also requires
0(N%) operations. Note, however, that only the result of the nultiplication of
M~ by a vector, as in Egs. (31) and (35), which correspoﬁds to an operator
application of A, rather than its explicit conputation is needed. This
operator application, as shown bel ow, can be performed nore efficiently in
only Q(N) steps.

For the sake of generality, we consider an application of Mt of the form

S
Q =M%, (71)
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For both serial and parallel conputation it is mre efficient to rewite the
above equation, after substituting Eg. (60), as
Q, =RT7>T[ - 9'17’W(WT5PT5"17’W)'1WT?T13'1?}(’5}0 | (72)
Here, the key to achieving a greater conputational efficiency is to perform
matrix-vector rmultiplication instead of matrix-matrix multiplication. |In this
regard, the products of matrices in Eq. (72) do not need to be conputed
explicitly and only the explicit conputation of matrix # is needed. G ven ?}G,
the conputational steps in inplementing Eq. (72) then consist of a sequence of
matrix-vector nultiplications and a vector addition wherein the natrices,
except for 34-1, are either diagonal or bidiagonal. Miltiplication of a vector
by matrix atis equivalent to the solution of a SPD bl ock tridiagonal system

Thus far, the factorization of M' has been presented in a coordinate-free
form Before its inplenmentation, however, the tensors and vectors involved in
its computation should be projected onto a suitable frame. The choice of the
appropriate frane and the way that the projection is performed significantly
affect the efficiency of both serial and parallel computations.

If the rotation of the one-DOF revolute joint i is given as the one about

the Z axis of frame i then

Z
i 6

= eR
[o1

The matrices Hl and wl in frame i are given as

H
i

and lwi =

OO O~ OO0
OCOO0OO0OO
[oNeNeoNeN JNo]
CO» OO0
O = OO0 0O0
O O000O0

Miul tiplication of any vector or matrix by 1Hl and ‘wi does not require any
computation but an appropriate pernutation of the elenents of the vector or
the matrix. However, in any other franme wl has a dense structure and its

mul tiplication by another matrix requires a rather significant anmount of
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operations. This clearly indicates that any projection of equations should
fully exploit the sparse structure of iH‘ and particularly of ‘w.

The matrix &4 and its elenents are given as

4 = Tridiag (B, A ,B' ]
i i i1
S P Y S B .
A=W+ PP W L=N, N-2, e, (73)
. R .
B, = k/iI1 Piwm i =N-1, N2, . . . .1 (74)

CGeneralizing the result of Eq. (69), it follows that

AT ~1 A -
P - 1

I
1-171-1" -1 1-1,1

T, ,-1 -1
A =W
1 1(11 * Ii—l,i)wi_

To exploit the structure of W, the submatrices A are conputed in frame 1 as

ooy, T -1 I ,.-1 i .
Ap = W 0T 1,00 ¥y (75)

I

Not e t hat, IHl and its inverse are constant in franme i and hence can be

1

precomputed. From Eq. (2), 1: can be conputed as

-1 -1
- A - At 1 o R J J°°s
I =s1 s 41t ($NHYY (§) t bt (76)
i i 1,ct | i i i,ci i ~ -1 = -1x
—SiJ =S J 'S +(1/m U
l i it i i

Bot h I and I: are constant in frane i+i. However, while I has a sinmple and

sparse structure, I;l has a dense structure, Rather than projecting '*1;-t
1

onto frane i, it is nore efficient to first project JI‘ and S onto frame i as
i
i : -1 — . + -
J = c, 1+1)“1J1C(i+1, 1) = (lJl) = ocd, e (! IJI) c(i+1, 1) (77)
i _ [ 1+1
S1 = C(1, i+1) Si (78)

and then conpute (11‘)'1 inframe i according to Eq. (76). The conputation of
Bl is also perforned in frane i as follows. Let us define

4 ;-13 141, = 141, S-11412 141
| Il lehl - \Pi ( Il) P‘ Whl

C(i,1+1) 0
C(i, i+1) = eR
0 C(i, 1+1)]

¥

6x6

The matrix \P1 is constant in frane i+t and can be preconputed. It is projected
onto frane i as

i _ i+1
Vo= Cl1, 141) v (79)
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Then, B, can be conputed as
B, = —‘wf‘\v1 (80)
whi ch does not need any conputation but a permutation of matrix ‘W. In order

to further exploit the structure of ’wx and ’H‘. the rest of the conputations

inEgq. (72) is also perforned in franme i. To do so, let us define a matrix R
u
N=
-C(N-1,N)"P u 0
R = 0 -C(N-2,N-1)""P U eR 0NN
0
i 0 0 -c(1,2)%P, U

Let us also define follow ng projections:

X = diag{‘Hl}; ‘W = diag(iwl); and ¢! = diag(llzl)

Through the rest of the paper, an underlined global vector or global block
diagonal matrix indicates that the ith elenent of the vector or the matrix is
described in the ith frame. Equation (72) is now rewitten as

Q, - HRT(U - ITRWATTWIR) ST RIT (81)
which inplies that all the conputations are performed in frame i.

The npst conputation-intensive part in inplenenting Eq. (81) is the
solution of the SPD bl ock tridiagonal system The block tridiagonal system can
be solved by both Block Cyclic Reduction (BCR)} al gorithm [33-35] and bl ock
LDL'factorization [361 in Q'N) steps. However, for serial conputation the
latter algorithmis nore efficient [34]. Using the block LDL"algorithm the
solution of the SPD block tridiagonal system consists of"three steps [361:
factorization, forward elimnation, and back substitution, wherein the first
step is computationally nore expensive than the second and third steps. Note,
however, that for the two applications of #in Eqs. (31) and (35), the
factorization needs to be performed once.

The projection schene discussed above and the explicit conputation of
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matrix « can be perforned in Q(N) steps. The matrix-vector nultiplications in

Eq. (81), which involve block diagonal and block bid agonal matrices, as well

as the vector addition can be also performed in N steps. Gven the Q' N)
cost of the SPD block tridiagonal system solution, i then follows that the

conput ational conplexity of inplementing Eq. (81) is of QN).

B. Conputation of A’

Both the explicit conputation of A™' and its operator applications can be
performed in Q(N) steps. Here, the explicit computation of A™ is considered
since its different operators applications in Eq. (29) require sinple matrix-
vector operations which can be conputed with flat costs.

Anticipating the fact that the application of A' i's needed in frame N+1

(e.g., for the case considered in §I1I, WM, HN o and the Vectors Kc’ K,
+ F

etc. , are given in frame N+1), the matrix A™ is conputed in this frane as

-1 Ne1 -1 T -1
A" = In,rm - €4°6 (82)

wherein the matrix &, or nore precisely, the only nonzero element of &, i.e.,

EN, is computed as

e = NWTC(N, N+1) (N+II—1N+1“
N N N

P) (83)
Note that, with this projection the matrix €'47'e and subsequently A™' are

conputed in frane N+1.

N+1 =1N+1 ]

The matrices I;’ and "”IN P, are constant in frame N+1 and hence
can be precomputed. The conputation of 46 is equi valent to the solution of
AQ = & . (84)
for Q. This represents the solution of a SPD bl ock tridiagonal system for six
right-hand side vectors which can be obtained in N steps. Exploiting the
sparse structure of &', the conput ati on of €' can be reduced to

e=86"n = S’EQNCIR6X6 (85)

6

wher e QNetRs" is the Nth elenent of Q. A™' can be then computed from Eq. (82)

“ by an addition of two 6x6 matrices. This inmplies that the cost of explicit
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conmput ati on of AVis of QN. If the block LDL'factorization of matrix o is
already conputed then Eq. (84) can be solved with a greater efficiency since

only the forward elimnation and back substitution steps need to be perforned,

C. Conputation of JQ and g.TFm

The evaluation of ¢ fromthe factorization given in Eq. (8), that is, by
explicitly conputing the product of its factors, results in a nore

conventional representation of J as

J=1(P  H,P H . ..., P

H]
N+1,N N~ N+1,N-1 N-1'

N+1,1 1

However, the conputation of JQO and C?TFN+1 in Eqs. (32) and (34) represent
operator applications of % and f whi ch can be performed without explicit
conput ation of &

The eval uation of 35)0 corresponds to the acceleration propagation in the
N-E algorithm while setting Qto zero. It can be recursively conputed as

YIR) —_— »T YT . -
VOl - Px 1V01-1 +HxQox 1 =1 to N+l (86)

with éom =0

The eval uation of }TFN corresponds to the propagation of spatial forces

+1

among the rigidly connected links of the arm Its recursive inplenentation is

derived by setting l'/l to zero in Eg. (12) and is given by

F = P'F |
i i i+l

= H'F i
i i1

Nt ol (87)

-

N to 1 (88)
The conputation of the linear recurrences in Egs. (86)-(87) as well as that of
Eq. (88) can be performed in Q(N) steps. Since FNnngi--Ven in frame N+1 and

v (and hence ¥*’

oNe1 ON’11 al so needs to be conputed in this frane, it is nore

efficient to directly performthe conputation of Egs. (86)-(88) in frame N+1.
This can be achieved by first projecting the vectors 2, and P‘ in frame N+1

and then performng the conputation in Eqs. (86)-(88) in this frane.
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D. Conputational Efficiency of Serial Al gorithm

For the solution procedure given in Table I, the application of the new
factorization of M-land A-*, as discussed above, results in a conplexity of
Q' N) for conputation of Steps Il, 11, and V. Step | requires the conputation
of the N-E algorithm which can be perforned in Q(N) steps and the conputation
of Step IV requires a flat cost independent of N. This inmplies an Q'N) overall
conplexity of the serial algorithm Therefore, the algorithmis asynptotically
as fast as the previously proposed algorithns [5,6,8,9,101.

However, in terns of nunmber of operations, this algorithm seens to be |ess
efficient than the previous algorithms. The cost of the serial solution of
forward dynam cs of an open-chain arm by using the new factorization of M-lis
anal yzed in detail in [13,14]. The analysis in [13,14] indicates that this
factorization results in an QN algorithm which, in terms of total number of
operations, is less efficient (by a factor of =3.4 for large N) than the best
serial Q(N) algorithns [15,17,181 for the problem

For a single closed-chain arm a sonewhat inproved efficiency can be
expected. As discussed above, the nost conputational ly-expensive part in
i mpl ementing the factorization of #' i's the block LDL' factorization of
matrix #. However, for the two operator applications of #' as well as the
conput ati on of A"' this factorization needs to be perfornmed once. But, even by
such an optim zation, it seens unlikely that these new factorization can
result in a highly competitive serial algorithm for the problem

It should be pointed out that the manifestation of matrices Vi in the
computation dictates a certain strategy for projection of the equations to
achieve an optimal conputational efficiency. This strategy is different from
those usual ly proposed for conputation of the inverse and forward dynam cs of
open- or closed-chain arm As discussed in [13,14], any other projection
strategy will significantly reduce the efficiency of serial and parallel

algorithns resulting fromthese factorization.
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VI. Parallel o(Log N Algorithms for Forward Dynamics of Single O osed-Chain
Arm
A Time and Processor Bounds in Conputation

The efficiency of the new factorization of #Hland A7t for parallel
solution of the problem can be assessed by exanining the parallelismin the
solution procedure of Table | while using these factorization. Here, parallel
computation of Steps |-V by using Q'N) processors is discussed.

Step I. By using the parallel algorithmin [37], the NE algorithm can be
conputed in a time of Q(Log N)J+0(1) with Q(N) processors. The vector addition
in Eq. 30)can be perforned in a fully decoupled fashion in a time of Q).
Step II. The conputation of the elenents of matrix 4 fromEgs. (75)-(78) is
fully decoupled and can be performed in Q1) steps, The matrix-vector
multiplications in Eg. (81), which involve block diagonal and bl ock bidiagonal
matrices, as well as the vector addition also represent fully decoupled

conmput ations and can be performed in (1) steps.

The block LDL'factorization algorithm seenms to be strictly serial and, in
fact, there is no report on its parallelization. On the ot her hand, the BCR
algorithm while not being efficient for serial conputation, is highly
suitable for parallel conputation, By using the parallel version of BCR
algorithm[331, the block tridiagonal systemin Eq. (81) can be solved in
O(Log N)+0(1) steps with Q'N) processors. This inplies that the parallel
i npl enentation of Eq. (81) and hence the operator application of M-lcan be
perfornmed in O(Log N)+O(1) steps with Q(N) processors.

The projection of vectors 2l and Pi’ as shown below, can be performed in
O(Log N)+0(1}) steps, The linear recurrence in Eg. (86) can be conputed in
O{Log N)+0(1) steps by using the Recursive Doubling Al gorithm (RDA) [38]. The
vector addition in Eq. (33) can be done in Q1) by using one processor.

Step Ill. By using the parallel version of BCR algorithm the solution of the

systeminEq.(84) for six right-hand side vectors can be conputed in
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O(Log N)+0(1) steps with Q(N) processors. The conputation of &, fromEq. (83),

@ from Eq. (85), and A from Eq. (S2) involve sinple matrix operations which
can be perforned in a time of (1) by using one processor.
Step IV. As discussed in §I1I, regardless of the mpbdel of contact considered,
the conputation of Step IV involves sinple matrix-vector operations which can
be conputed in a time of Q(1) by using one processor.
Step V. Wth the vectors 2i and Pi already projected in Step Il, the linear
recurrence in Eq. (87) can be conputed in O(Log N)+0(1) steps by using RDA and
the conputation in Eg. (88) is fully decoupled and can be done in Q(l). As in
Step Il, the operator application of M-lin Eq. (35) can be performed in a
time of O(Log N)+0(1) and the vector addition in Eq. (36) in a tine of Q).

It can be concluded the application of the new factorization of M-land A
enabl e the solution procedure of Table | to be conputed in a time of
Q(Log N)+0(1) by using Q'N) processors. This indicates a both time- and
processor-optiml parallel algorithm for the problem In the following, a nore

detailed practical inplenentation of this parallel algorithm is discussed.

B. Parallel Solution of SPD Block Tridiagonal Matrix

The solution of the block tridiagonal systens represents the nost
conput ati onal ly-intensive part of the overall solution procedure. Therefore, a
central issue that affects the efficiency of parallel conputation is the
choice of parallel algorithmfor solution of the block tridiagonal system

There are two variants of the BCR algorithm the Odd-Even Reduction (OER)
and Odd-Even Elimnation (OEE) algorithns [33]. The CEE algorithm while less
efficient than the CER algorithm for serial conputation, provides additional
parallelismin both conputation and communication while using the sane nunber
of processors and interconnection structure as for OER algorithm [33].

W consider the solution of a block tridiagonal system as

46 = v (89)
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where ¢ = col{¢1} and v = col{wi), i =Nto 1, wth ¢1 and wi standi ng for
subvectors or subnatrices of appropriate size, The CEE algorithmis given as
For i = N to 1, Do

Al = A, B =B, and w‘: “ g, (initialization)
End Do

For | =1to M= [LogzN], Do

For i = Nto 1, Do
IR I S £ 10 o SUUENCS DOG FE BN S S TN P B DS WG B
Ai Ai Bi (Ai*zj 1) (Bi ) (Bi_zj 1) (Ai-2) 1) Biﬁaj-l (90)
S INSEIPS L VS b SRS SN £ I
B1 Bi (Al*zj 1) Bi‘zj 1 (91)
End Do
End Do
For j =1 toMs= fLogaN], Do
For i = Nto 1, Do
S D L3 SR S IS b SNERC L 0 C3 S SEE UM PR S SEEES S B3
v v Bx (A“2) 1) "I’nzjl (Bx-zj 1) “‘1-2’ 1) wn-z"‘ (92)
End_Do
End_Do
For 1 = Nto 1, Do
Sol ve AT"’: = w:‘ for ¢1 (93)

End_Do

where [x] indicates the smallest integer greater than or equal to x. It should

be noted that in Egqs. (90)-(91) it is nore efficient to first conpute the

scal ar 1d1" factorization of the dense submatrices rather than their explicit

inverses. The multiplication of the inverse of a matrix By another matrix can

be conputed as the solution of a linear systemwith multiple right-hand sides.
The CEE algorithm can be regarded as a procedure for diagonalization of

matrix & in which a sequence of transformations are applied to both sides of

Eq. (89) resulting in a block diagonal system given by Eq. (93). In this

sense, Egs. (90)-(91) represent the diagonalization of matrix 4 while Eq. (92)
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represents the updating of the right-hand side. Once matrix # is diagonalized,
the solution of the linear systens required for operator applications of !
as well as the solution of the systemin Eq. (S4) can be obtained by conputing
Egs. (92)-(93) for the corresponding right-hand sides and by using the already
conput ed submatrices Aij and Bf generated during diagonalization of matrix 4.

The parallel inplementation of both the CER and CEE algorithnms for scalar
tridiagonal systems is straightforward. However, for block tridiagonal systens
care should be taken to achieve the optinal efficiency. In fact, it seens that
efficient inplementation of either algorithms for block tridiagonal systens
has received less attention in the literature. Note that, an inplenmentation
strategy represents a specific process-to-processor allocation scheme. To see
this, consider the parallel inplementation by using N processors, designated
as PR, i = Nto 1. A first possible (and nore obvious) strategy for parallel
i mpl ementation of the CEE algorithmis based on allocating the conputation of
Af, Bf' 'J/f. and ¢ as well as all the intermediate terns in Egs. (90)-(92) to
processor PR . Note that, this strategy, which seens to be widely adopted in
the literature for inplenmentation of both the OER and OEE algorithns, is
optimal for scalar tridiagonal systemns.

W have devel oped a second strategy in which the termns Af and wf as well as
all internmediate terns involving qu are conputed by PRx' The two strategies
lead to two different structures for the conputations performed by each
processor as well as the conmunication anong processors. The inpact of the two
strategi es on both conputation and communi cation complexfty of the algorithm
is discussed in [39). Here, suffice to mention that the second strategy,
presented below, not only leads to a greater conputational efficiency but,
more inportantly, it also provides a high degree of overlapping between the

conmputation and the comunication which can be exploited to reduce the

conmuni cati on over head.




C. Strategy for Miltilevel Parallel Conputation

An inp ementation of the parallel Q(Log N algorithmwi th N processors
follows d rectly fromthe analysis in Part A However, the theoretical
analysis n [13,14]- which is also supported by the practical inplementation
results in [40]- indicates that, for forward dynam cs solution of an open-
chain arm the parallel computation of the Schur Conpl ement factorization of
M“by N processors results in a parallel algorithmthat, despite its
asynptotic optimality, offers a |limted speedup for the systems with small N
This is due to the large constant coefficients on the polynoni al conplexity of
the resulting parallel algorithm For forward dynamics solution of the closed-
chain arm given its greater conputational cost, parallel conputation by N
processors, would result in even |arger constant coefficients. Therefore, key
to increasing the efficiency of parallel algorithmis to reduce the constant
coefficients by exploiting a higher degree of parallelismin the conputation
through a multilevel approach and by using a larger nunber of processors.

A first possible strategy for multilevel parallel conputation is to exploit
fine-grain parallelismin various matrix-vector operations of the algorithm
However, this would require the inplementation of the algorithmon special-
purpose parallel architectures such as the one proposed in [28]. Here, we
consi der a second strategy based on a coarse-grain nultilevel parallel
conputation with simple architectural requirenents.

There are both algorithmc and architectural incentives for adopting this
strategy, From an algorithm c standpoint, the applicatior; of the Schur
Conpl ement factorization of #™' and A-* to the sol ution procedure of Table |
results in a high degree of coarse grain parallelism For example, the
conputation of Step I can be perforned in parallel with the conputation and
di agonal i zation of matrix #. Once matrix # is diagonalized, the conputation of

A" can be performed in parallel with the rest of the conputations in Step |
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and Step Il. Furthermore, the solution of the systemin Eq. (84) for six
right-side vectors essentially involves six< decoupl ed processes which can be
computed in parallel by using 6N processors.

From an architectural standpoint, this approach is notivated by the fact
that, for small N, it is likely that the number of available processors of the
target architecture be much greater than N. This clearly suggests to increase
the efficiency of the algorithm by using nore of the processors that would
otherw se be idle.

Cearly, depending on the nunber of processors enployed and hence the degree
of parallelismexploited, a variety of multilevel parallel inplementations of
the algorithm can be considered. Furthernore, any inplenentation will also
strongly depend on the features of the target architecture, e.g. ,
synchroni zation mechani sm and processors’ interconnection structure. In the
follow ng, we discuss an inplementation of the algorithm by using 2N
processors. As will be shown, the main advantages of this inplementation are

its sinple synchronization and communication requirenments.

D. Inplementation of Miltilevel Parallel OQLog N) Algorithm

For the inplenentation of the nultilevel parallel algorithm we consider
two interconnected processor arrays, each with N processors. The processors
are denoted as PRk iy k =1, 2, andi =1to N(Fig. 3 shows the tw arrays
for N=8.) Each array is a SIMD architecture with a Shuffle Exchange
augnented by Nearest Neighbor (SENN) interconnection structure (Fig 2). The
SENN is optinmal for the inplenmentation of the parallel algorithm since it
perfectly matches the inherent comunication structure of different steps of
the algorithm In describing the conputational steps of the algorithm 1itis
assumed that the constant kinematic and dynamic parameters of link i reside in

the menory of processors PR1 , and PR2 .

The conputation of the nultilevel parallel algorithm involves an ordering
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which slightly differs fromthat of serial algorithmof Table |I and it

performed according to the follow ng steps.

is

Step |: Diagonalize Matrix # and Conpute A7 by Processor Array PR“

a. Projection and Conputation of’ Matrix 4

For i

1 to N Do_Parallel

1. Form C(i, i+1) and C(i, i+1).

i

2. Compute s, (lJi)'I, and (111)"fr0mEqs. (78), (77), and (76).

3. Send (’11)'1 to PR .

1

4. Compute B, fromEgs. (79)-(80).

5. Conpute A from Eq. (75).

End Do Parall el

b. Diagonalize Matrix «

For j

10.

11.

12.

1to M= ['LogzN] , Do

i =1to N Do Parallel (by all PR“'s)
Conmpute ¢de’ factorization of Af" [with A? = A).
Sol ve Aj"lcf'1 = Bf—l for C:'l.

Send cf” to PR, .

Conput e D:'l = (Bf")TCf".

send D 'to PR j-1.
i 1,1+2
-1_)- - -

Sol ve Af Ff ' (Bf_;Jq)T for Ff L

Send Ff'l to PR2

’

-1 _ BJ-I o Tad - lepd-t 4T =1 N Tege1
Conpute G/ (B/_,3-1) (Al ") (B’ j-1) (Bl -1l Fo
Send 6! to PR J-1.
1 1, 1-2
Conpute (B! ;-1)T = (87T (Al )y M@ 0T =gTHTEI
1-2 i 1 i-2 !
J T
Send (B‘_zj-—l) to PRI,':-ZJ-I and PR1,1+2H'
S S U T | et
Conput e Ai Ax Dl_zj—l GHZJ 1.

End_Do Parall el

End Do
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For i = 1to N, Do Parallel (by all PRH’s)

13. Send A" to PR,

End Do Parall el

c. Conpute Matrix A

L Initialization

For i =1 to N, Do_Parallel (by all PR i)
set ¢ = €

End_Do Parall el

2. Conpute o

For j =1 to M= [Log N], Do

For i = 1to N, Do Parallel (by all PR, i’s)
. compute VM= (B)HT(AMH T = (o
ii. Send E)7' to PR -1
i 1, 1+2
j-1

iii. Conpute H)™' = By_,)- (AT = R T

iv. Send Hf-l to PR1 1—2‘1-1'

-1 j-1 j-1
R o -1 - Hj' j=1
i i-2 i+2

v. Conmpute wf =y

End_Do Parallel

End_Do

— Ta — T, , My-1 m
3. Conpute © = &Q = 8N(AN) Yy by PR, 4
4. Compute A7 ="'1 - @by PR .

-1

5. Send A" to PR . by PRI‘N.
6. Wit (end of operation)

Step I1. Conpute .‘}T and f/om by Processor Array PR2i
a. Projection
1. Form C(i, i+1) in parallel for i = Nto 1.

2. Solve the linear recurrence C(i+2, ) = C(1+2,1+41)C(i+1,1),1 =1to N-1,

in parallel by using RDA.
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3, For i =1 to N, Do_Parallel (by all PR, 's)
1

N+1

i. Conpute "'z = C(N+1,1)' Z.

1
ii. Conpute “”sl = C(N+1, 1+1)'" 1 s
1
iii. Conmpute "*’Pl = C(N+1, 1+1)‘”Pi

End Do Parall el
b. Conpute 9T
1. Conpute b'(8,Q) by using the parallel algorithmin [37].
2. Conpute F’“:r’-b;(e,Q), i =Ntol, in parallel.
3. Set ??G = f;’T
4. Conpute X' = $7'RHF .
5. Conput e x° = M‘RT.
6. Wit.
c. Conpute QO
1. Receive AT from PR2 ,
2. Set yP = o
3. Conpute w':‘ by repeating Step I.C.ii by processors PRzi.

4. Solve Eq. (XX) in parallel for all qsi‘s,i = Nto 1, and set ¥° = .

5. Conpute X'= §7'RWY’
6. Conpute X= x! - X
7. Compute Q= H'R'X°
8. Set ¢, =@

d. Conpute Voner
1. Solve the linear recurrence in Eq. (86) in parallel b§ usi ng RDA.
2. Compute Vorm from Eq. (33) by processor PR2 "

3. Wit.

Step I1l. Conpute FM1 by Processor PR2 N
1. Receive A™! from PR

2. Solve Eq. (29) for KC and conpute FN‘1 fromEq. (24).
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Step IV. Compute QO by Processor Array PR, |
a. Compute 7°
1. Solve the linear recurrence in Eq. (S7) in parallel by using RDA
2. meuter;fromEq.(88)in;mrdlelfori = Nto 1.
b. Conput e QC
1. Set ¥ =9, repeat Step 11. c.2-8, and set QC = Q.

G
2. Conpute Q‘: QOi- chin parallel for i = Nto 1.

E. Performance of Miltilevel Parallel Al gorithm

In order to appreciate the sinmple comunication and synchronization
requirenents of the multilevel parallel algorithm a brief discussion of its
behavior is in order.

The processors PRl,’ s are activated by receiving the data input @ and Q
The processors PRZS'S are in turn activated by receiving the data input from
processors PRl,’s, The activities of processor array PR11 in conputing Step
| and those of processor array PR, | in computing Step 11 are then performed
in parallel and for the nost part asynchronously. The cost of conputing the
matrices (il‘)'1 is much less than that of conputing the vector 3}. Therefore

-1

the matrices (lIi) are conputed well before they are needed and hence their

conmuni cation by processors PRm’s to processors PRLl‘s can be perforned
asynchronously,

Both the conputation and communi cation cost of diagonalization of matrix 4,
as shown by theoretical analysis in [141 and practical inmplementation in [40],
are greater than those of the evaluation of vector 9;. Therefore, upon

conput ati on of x? (which requires a snmall anmpunt of additional operations) the

processors PRz’ enter the wait state and becone active by receiving the

submatrices AT. Note that, the conmunication of submatrices C:* and Ff‘ can

be perforned asynchronously, i.e., they can be sent to processors PR, as
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soon as they are conputed.

The conput ation of AT by processors PRH and QO and VDN” by processors
PR21 can be performed in parallel. It can be easily shown that both the
conmputation and communication costs of the evaluation of A'1 are nuch greater
t han those of -the eval uation of QO and l'/wl since the former requires the
computation Eg. (92) for six right-hand side vectors while the latter requires
the same conputation for only one right-hand side vector. Therefore, upon
conput ati on of I'/ON” the processors PR, enter the wait state and becone
active by receiving Al to performthe conputation of Steps IlIl and IV. Based
on our discussion, it can be concluded that the conputation of Step Il can be
totally overlapped with that Step |I. As a result, the conputation and
comuni cation costs of Step Il do not contribute to the overall conputation
and conmuni cation cost of the algorithm

The efficiency of our strategy for inplementation of the CEE algorithm in
terns of communication overhead mnimzation, can be assessed by analyzing the
diagonalization Of matrix # in Step 1.b and the conputation of " in Steps 1.c
In fact, as can be seen, any comunication activity can be overlapped with its
i medi ate conmputation activity. In nost of energing parallel architectures
(both SIMD and MIMD) each node has one processor dedicated to conputation and
a second processor (e.g. , a DVA) dedicated to communication. “On these
architectures, this overlapping of the comrmunication with the conputation can
be exploited to significantly reduce the conmunication overhead.

I't shoul d be enphasized that the choice of the SIMD mode for parall el
impl ementation of the algorithmis mainly nmotivated by the regularity in its
conmput ati on. However, the algorithm has a rather large grain size since,
particularly in Step I, each processor performs a matrix-vector operation or a
series of such operations before communicating with other processors. This

large grain size coupled with the possibility of overlapping the conmunication
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with the computation and the low level of comrunication activities, make the
mul tilevel parallel algorithmhighly suitable for inplenmentation on MIMD
architectures such as Hypercube.

In fact, our practical inplenentation of a parallel algorithm based on the
Schur Conpl enent factorization of #' for forward dynami cs sol ution of open-
chain armon a MIMD Hypercube architecture [40] supports the efficiency of the
proposed strategies for both inplenentation of the CEE al gorithm and,
particularly, coarse grain nultilevel parallel conputation. In particular,
note that, the parallel algorithmin [37] for conputation of b’'(e,Q)in Step
II.b has a fine grain and its inplementation on MIMD architectures leads to a
very limted speedup which can degrade the overall performance of parallel
conput ati on. However, as was shown, with a multilevel parallel conputation
approach the conputation of b" (6,Q) can be fully overlapped with the rest of

the conputations. This elinmnates the possibility of performance degradation

due to the fine grain parallel conputation of b'(6,Q).

VI1. Discussion and Conclusion
In this paper, we presented a new factorization technique for conputation of

! and A'l, This technique results in Schur Conplenent factorization of ™

M
and A™' and subsequently a new Q(N) algorithm for forward dynam cs solution of
single close-chain arms. This Q(N) algorithmis strictly efficient for
parallel conputation. That is, it is less efficient than previously proposed
Q(N) algorithms for serial solution of the problem But, Hto our know edge, it
represents the first algorithmthat can be fully parallelized, resulting in a
both time- and processor-optimal parallel algorithm for the problem

In addition to theoretical significance, the resulting parallel 0(Log N)
algorithmis also of practical inportance. |In fact, the algorithm achieves the

time lower-bound in the conputation while also providing a high degree of

coarse grain parallelism which can be exploited with a rather sinple
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communi cation and synchronization requirenents

We did not evaluate the conputational cost of either serial or parallel
algorithns in terms of number of operations. As stated before, it is unlikely
that our serial algorithm can beconme conpetitive with the previously proposed
QN algorithms for the problem The difficulty in assessing the relative
efficiency of serial algorithm of this paper arise fromthe fact that the
analysis of the Q(N) algorithms in the literature is, for mostpart, linmted
to the asynptotic conplexity. This nmakes the determination of the best serial
algorithm in terns of nunber of operations, highly difficult. Further
anal yses and conparative studies are needed to establish a better
“understanding of the relative efficiency of various algorithns.

The lack of such a know edge on the nost efficient serial algorithm also
renders the analysis of the speedup of the parallel o(Log N) algorithms of
this paper inpossible. However, it is clear that the multilevel parallel
computation of these algorithms can lead to a significant speedup in the
conputation, particularly, for highly redundant arms. In this sense, these
multilevel parallel algorithnms have imediate application for simulation of
redundant arns such as those proposed for Space Station. In fact, the Space
Station Renpte Mani pul ator System (SSRMS) and the Special Purpose Dexterous
Mani pul at or (SPDM) may have as many as 25 DOFS in total,

The analysis of this paper clearly indicates that the main application of
these new factorization will nost likely be linmted to parallel conputation
of the problem This suggests that further research work-s' should be focused on
devising nore efficient strategies for their parallel inplementation. In this
sense, nmuch can be learned fromthe results of the practical inplementation of
a multilevel parallel algorithm basedon the Schur Conpl enent factorization of

M“for open-chain system on Hypercube [401.

40




Acknow edgnent s

The research described in this paper was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the

National Aeronautics and Space Administration (NASA).

Appendi x: Positive Definiteness of Mtrix «

Fol | owi ng theorem (see [361, pp. 140 for proof) is used in the analysis of

positive definiteness of various matrices.

n nxk

Theorem |f AeR™" is positive definite and XeR has rank k, then B = XAX

is also positive definite.
The matrix #'eR™ is the inverse of the mass matrix and is positive

definite. Therefore, from the above theorem the positive definiteness of

mat rix A'l, given in Eq. (21), depends on the rank of Jacobian matrix geR®*".

If, due to the kinematic singularity, the rank of J becomes |less than six then
the matrix A™' becomes singular. If A'1 is positive definite then it follows

that the matrix w;”/\'lwm , in Eq. (29), is also positive, definite since W,

1 1

is an orthogonal and hence a full rank matrix.

The matrix £ is given as 4 = W' PT9" Pw eRV*V,

of matrix 3'15{R6NX6N follows fromposit ve definiteness of I and I;I.

The positive definiteness

It can

6Nx6N

be easily seen that the matrix PeR has rank 6N, Hence, the matrix

P37 perM N 15 al so positive definite. For a joint i with ni<6é DOF, the

6x6-ni

colums of the matrix wlclR are orthogonal and hence it has rank 6 - ni.

6NX6N~m

Therefore, the matrix WeR has rank 6n-m where m denotes the total

DOFS, that is, m= 2:‘_1 ni. Again, fromthe above theorerﬁ it follows that the
matrix £ is also positive definite. The positive definiteness of matrix €

follows by a sinmilar reasoning and using the orthogonality of matrices Hx.
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